PostgreSQL Gotchas for
App Developers

FOSS-North 2019
Gothenburg, Sweden

Magnus Hagander
magnus@hagander.net

Magnus Hagander

e Redpill Linpro

= Principal database consultant
e PostgreSQL

= Core Team member

= Committer

= PostgreSQL Europe

I'm not an app dev
I'm not a full stack dev

But | work with them

Not an appdev

e Also dabble in some web dev
e Not particularly good at it

e Mainly python+django

e So there will be examples...

So what's a gotcha?

e Seemed like a good idea

= Or at least a simple one
e Unintended or unknown consequences
e Can be done better

So, let's get started?

Some of these you already know

Connection pooler

Connection pooler

e OK, you know to use one, right?
e Extra important on PostgreSQL
e Designed to work with poolers

Pooler issues

e Too many pools

= One per user/db combination!
e Too large pools

= Almost nobody has too small!

Speaking of users

Superuser

e Don't ever use from app
e Not even for migrations
= Use schema owner!
e Not just permissions override!

Trust authentication

e Justdon't used it.

JSON

JSON

Please don't:

CREATE TABLE all_my_data (

id int GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
j jsonb

)

JSON

Instead do:

CREATE TABLE all_my_data (

id int GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
something int NOT NULL,

somethingelse text,

anotherone timestamptz,

4

actual_unstructured_data jsonb

)

Migrations

Migrations

e Avoid doing in application
= At almost any cost

e Raw SQL implementation much more performant
= Easier and safer too!

Migrations

for o in MyModel.objects.filter(
created__lt=datetime.datetime(2018,1,1)):

0.something = True
o.modified = datetime.now()
o.save()

Migrations

UPDATE mymodel
SET
something=true,
modified=CURRENT_TIMESTAMP
WHERE created < '2018-01-01'

Migrations

e Even for complex transformations

e Worthwhile to create temporary stored proc
= Maybe even in app language?

e But usually, use a DO-block

SQL

SQL

Never use it!

SQL

You didn't buy that, eh?

CTEs

Common Table Expressions
"WITH" queries
Non-recursive or recursive
Neat way to structure code

CTEs

SELECT a,b FROM t1 WHERE x
)
SELECT a,b,c
FROM w INNER JOIN t2 ON t2.x=w.a

CTEs

Optimization barrier!

e Optimizer doesn't see through CTE boundaries!
e Avoid using unless intentional

= Until PostgreSQL 12
e Orrecursive

Speaking of
optimization

Representative data

e Test with representative data!
e Certainly not empty dataset
e But also avoid fabricated data
= Unless you can reproduce patterns
e Copy of production is best
= But may be bad for other reasons

Representative data

e Query optimizer uses statistics

= Common values

= Distributions

= NULL fractions

= etc...
e Same size can give different plan
e Especially for non-linear data

Generating data

SELECT * FROM
generate_series(1,10000);

= OOk ODNBRE

Generating data

SELECT * FROM
generate_series(NOW(), NOw()+'l week', '8 hours'")

2018-03-02 15:28:22.394444+01
2018-03-02 23:28:22.394444+01
2018-03-03 07:28:22.394444+01
2018-03-03 15:28:22.394444+01
2018-03-03 23:28:22.394444+01

Avoid

ORM overselect

e ORM version of

SELECT * FROM

e Usually expanded across joins

e Fields unknown at query definition
= So easier to get everything

e Disables some optimisations

ORM overselect

Simple table example

1 IMagnus |Hagander
2 |Bruce |Momjian
3 |Dave Page

Simple table example

Simple table example

ORM overselect

Including

Message.objects \
.only('date', 'sender') \
.filter(datefilter, hiddenstatus__isnull=True)

Excluding

Message.objects \
.defer('bodytxt', 'cc', 'to') \
.filter(datefilter, hiddenstatus__isnull=True)

ORM loops

Looping in app causes many queries
Can easily become exponential
Queries have to be restarted
Latency starts to matter!

Avoiding loops

e Force joins to happen early
e Often much cheaper
e Even if it results in more data

Forced joins

ConferenceRegistration.objects \
.select_related('regtype') \
.Sselect_related('registrationwaitlistentry') \
.filter(conference=conference) \
.order_by('-created')

Avoiding loops
GROUP BY queries

e Often handled badly in ORMs
e In particular hierarchical data
e Collecting aggregates to the rescue!
e Native conversion
= Good support in most drivers

Collecting aggregates

e List of conference session
e Each session has zero or more speakers
e Get the list to draw schedule

Collecting aggregates

SELECT s.id, s.title, s.starttime
,array_agg(spk.name ORDER BY spk.name) AS speakers
FROM sessions s
LEFT JOIN session_speakers ss ON ss.session=s.1id
LEFT JOIN speakers spk ON spk.id=ss.speaker
WHERE s.conference_id=17
GROUP BY s.id
ORDER BY starttime

Collecting aggregates

>>> curs = connection.cursor()

>>> curs.execute("...")

>>> r = curs.fetchone()

>>> pprint(r)

(957,

u'PostgreSQL Replication & Upgrades',
datetime.datetime(2015, 10, 27, 9, 0),
[u'Petr Jelinek', u'Simon Riggs'])

>>> type(r[3])

<type 'list'>

>>> type(r[3][0])

<type 'unicode'>

What about structure

e More advanced patterns than arrays
e Multiple keys
e Array-of-array is a PITA to deal with
= Template languages unhappy
e JSON to the rescue!
= Driver support is decent

Collecting aggregates

SELECT s.1id, s.title, s.starttime, json_agg(
json_build_object('name', fullname, 'company', company)

ORDER BY spk.name) AS speakers

FROM sessions s

LEFT JOIN session_speakers ss ON ss.session=s.id

LEFT JOIN speakers spk ON spk.id=ss.speaker

WHERE s.conference_id=17

GROUP BY s.id

ORDER BY starttime

Collecting aggregates

>>> r = curs.fetchone()
>>> pprint(r)
(957,
u'PostgreSQL Replication & Upgrades',
datetime.datetime(2015, 10, 27, 9, 0),
[{u'company': u'ACME Global', u'name': u'Petr Jelinek'},
{u'company': u'ACME Rockets', u'name': u'Simon Riggs'}])
>>> type(r[3])
<type 'list'>
>>> type(r[3][0])
<type 'dict'>

Avoiding ORM loops

Acting on multiple objects

e We always use bound parameters
= Right?
e Such as:

curs.execute("... WHERE x=%(id)s", {
'id': id,

})

e But what about multiple objects?

Multiple objects

curs.execute("... WHERE x IN (%(id1)s, %(1id2)s)", {
'id1': idlist[1],
'id2': idlist[2],
}
e Does not scale
e TOO many unigue queries

e Annoys monitoring

Multiple objects

curs.execute("... WHERE x IN ({0})".format(
",".join(idlist),

))

e Did we not learn yet?!

Binding arrays

curs.execute("... WHERE x=ANY(%(idlist)s)", {
'idlist': idlist,
1)

e Also works for functions

curs.execute("SELECT myfunction(%(idlist)s)", {
'idlist': idlist,
)

One final thing

Deadlocks

e Ablocking lock is not a deadlock
e Much smaller problem than most people think
e But look for the right thing..

Thank youl!

Magnus Hagander
magnus@hagander.net
@magnushagander
https://www.hagander.net/talks/

This material is licensed
: E (gl

